<u>Hide Ads</u> About Ads

Sine, Cosine and Tangent

Three Functions, but same idea.

Right Triangle

Sine, Cosine and Tangent are all based on a Right-Angled Triangle

Before getting stuck into the functions, it helps to give a **name** to each side of a right triangle:

- "Opposite" is opposite to the angle θ
- "Adjacent" is adjacent (next to) to the angle $\boldsymbol{\theta}$
- "Hypotenuse" is the long one

Adjacent is always next to the angle

And **Opposite** is opposite the angle

Sine, Cosine and Tangent

Sine, Cosine and Tangent are the three main functions in trigonometry.

They are often shortened to sin, cos and tan.

To calculate them:

Divide the length of one side by another side

... but which sides?

For a triangle with an angle $\boldsymbol{\theta}$, they are calculated this way:

Sine Function: $sin(\theta) = Opposite / Hypotenuse$

Cosine Function: $cos(\theta) = Adjacent / Hypotenuse$

Tangent Function: $tan(\theta) = Opposite / Adjacent$

In picture form:

Example: What is the sine of 35°?

How to remember? Think "Sohcahtoa"! It works like this:

Soh	S ine = O pposite / H ypotenuse
cah	Cosine = Adjacent / Hypotenuse
toa	Tangent = Opposite / Adjacent

You can read more about (sohcahtoa) ... please remember it, it may help in an exam

Why use trig functions

Why?

Why are these functions important?

- · Because they let us work out angles when we know sides
- And they let us work out sides when we know angles

