Sine, Cosine and Tangent

Three Functions, but same idea.

Right Triangle

Sine, Cosine and Tangent are all based on a Right-Angled Triangle

Before getting stuck into the functions, it helps to give a name to each side of a right triangle:

- "Opposite" is opposite to the angle θ
- "Adjacent" is adjacent (next to) to the angle θ
- "Hypotenuse" is the long one

Adjacent is always next to the angle

And Opposite is opposite the angle

Sine, Cosine and Tangent
Sine, Cosine and Tangent are the three main functions in trigonometry.

They are often shortened to sin, cos and tan.

To calculate them:

Divide the length of one side by another side
... but which sides?

For a triangle with an angle $\boldsymbol{\theta}$, they are calculated this way:

> Sine Function: $\boldsymbol{\operatorname { s i n } (\theta) = \text { Opposite } / \text { Hypotenuse }}$
> Cosine Function: $\boldsymbol{\operatorname { c o s } (\theta) = \text { Adjacent } / \text { Hypotenuse }}$
> Tangent Function: $\boldsymbol{\operatorname { t a n } (\theta) = \text { Opposite } / \text { Adjacent }}$

In picture form:

Example: What is the sine of 35° ?

4.0

Using this triangle (lengths are only to one decimal place):
2.8
$\sin \left(35^{\circ}\right)=$ Opposite / Hypotenuse
$=2.8 / 4.9$
= 0.57...

How to remember? Think "Sohcahtoa"! It works like this:

Soh...	Sine $=$ Opposite $/$ Hypotenuse
...cah...	Cosine $=$ Adjacent $/$ Hypotenuse
...toa	Tangent $=$ Opposite $/$ Adjacent

You can read more about sohcahtoa ... please remember it, it may help in an exam

Why use trig functions

Why?

Why are these functions important?

- Because they let us work out angles when we know sides
- And they let us work out sides when we know angles

Example: Use the sine function to find "d"

We know:

- The cable makes a $\mathbf{3 9}{ }^{\circ}$ angle with the seabed
- The cable has a $\mathbf{3 0}$ meter length.

And we want to know "d" (the distance down).

$$
\begin{aligned}
\qquad \text { Start with: } & \sin 39^{\circ}=\text { opposite/hypotenuse } \\
& \sin 39^{\circ}=d / 30 \\
\text { Swap Sides: } & d / 30=\sin 39^{\circ} \\
\text { Use a calculator to find } \sin 39^{\circ}: & d / 30=0.6293 \ldots \\
\text { Multiply both sides by } 30: & d=0.6293 \ldots \times 30 \\
& d=\mathbf{1 8 . 8 8} \text { to } 2 \text { decimal places. }
\end{aligned}
$$

The depth " d " is $\mathbf{1 8 . 8 8} \mathbf{~ m}$

