Exponents

An exponent (ex-po-nent) refers to the number of times a number is multiplied by itself.

Examples:

$$
\begin{aligned}
& 5^{2}=5 \cdot 5=25 \\
& 2^{3}=2 \cdot 2 \cdot 2=8 \\
& 10^{5}=10 \cdot 10 \cdot 10 \cdot 10 \cdot 10=100,000 \\
& 1^{7}=1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1=1
\end{aligned}
$$

Tip \#1: 10^{n} is a 1 with n zeros after it. $\left(10^{2}=100 ; 10^{3}=1,000 ; 10^{7}=10,000,000\right)$ Tip \#2: 1^{n} is a 1 no matter what value is used for n.

Vocabulary notes:

- 5^{2} can be read as 5 to the second power or 5 squared.
- 2^{3} can be read as 2 to the third power or 2 cubed.

Higher exponents are read as the $4^{\text {th }}$ power, etc.

Note: Any number raised to the zero power is 1.

$$
5^{0}=1 \text { and } 342^{0}=1 \text {, etc. }
$$

100,000	10,000	1,000	100	10	1	0.1	0.01	0.001	0.0001
100,000	10,000	1,000	100	10	1	$\frac{1}{10}$	$\frac{1}{100}$	$\frac{1}{1,000}$	$\frac{1}{10,000}$
10^{5}	10^{4}	10^{3}	10^{2}	10^{1}	10^{0}	10^{-1}	10^{-2}	10^{-3}	10^{-4}
			$\begin{aligned} & \frac{n}{3} \\ & \stackrel{y}{y} \\ & \frac{0}{y} \\ & \vdots \end{aligned}$	$\stackrel{\stackrel{2}{5}}{\stackrel{y}{5}}$	$\stackrel{\circ}{\stackrel{\circ}{5}}$	$\stackrel{n}{\#}$			
80		\%	(0)	\%	(0)	(3)	cent	mill	

Note: Any number raised to the zero power is 1.

$$
5^{0}=1 \text { and } 342^{\circ}=1 \text {, etc. }
$$

Expanded Notation uses fractions for place value.
$34.762=3 \times 10+4 \times 1+7 \times \frac{1}{10}+6 \times \frac{1}{100}+2 \times \frac{1}{1,000}$

Exponential Notation uses exponents for place value.
$34.762=3 \times 10^{1}+4 \times 10^{0}+7 \times \frac{1}{10^{1}}+6 \times \frac{1}{10^{2}}+2 \times \frac{1}{10^{3}}$

Exponents and Integers

Be sure to watch the parentheses! Is the negative being raised to a power or is the number being raised and then you need the opposite?

Examples:

$$
\begin{aligned}
& 5^{2}=(5) \cdot(5)=25 \\
& (-2)^{4}=(-2) \cdot(-2) \cdot(-2) \cdot(-2)=+16 \\
& -(2)^{4}=-(2) \cdot(2) \cdot(2) \cdot(2)=-16 \\
& -2^{4}=-(2) \cdot(2) \cdot(2) \cdot(2)=-16
\end{aligned}
$$

Multiplication and Division with Exponents

Rules:

$$
\begin{aligned}
& a^{m} \times a^{n}=a^{m+n} \\
& a^{m} \div a^{n}=a^{m-n}
\end{aligned}
$$

Examples:

$$
\begin{aligned}
\frac{3^{6}}{3^{2}} & =\frac{3 \times 3 \times 3 \times 3 \times 3 \times 3}{3 \times 3} \\
& =3^{(6-2)}=3^{4}
\end{aligned}
$$

$$
\begin{aligned}
10^{5} \cdot 10^{18} & =10^{5+18} \\
& =10^{23}
\end{aligned}
$$

Raising an Exponent to a Power

Rules:

$$
\left(b^{m}\right)^{n}=b^{m \times n}
$$

Examples:

$$
\begin{aligned}
\left(r^{3}\right)^{2} & =r^{3} \cdot r^{3}=r^{(3+3)}=r^{6} \\
\left(s^{7}\right)^{4} & =s^{7 \cdot s^{7} \cdot s^{7} \cdot s^{7}=s^{(7+7+7+7)}=s^{28}} \\
\left(2^{3}\right)^{4} & =\underbrace{2^{3} \cdot 2^{3} \cdot 2^{3} \cdot 2^{3}}_{4 \text { factors of } 2^{3}} \\
& =\underbrace{2 \cdot 2 \cdot 2}_{12 \text { factors of } 2} \\
& =2^{12}
\end{aligned}
$$

Rules:

$$
x^{-n}=\frac{1}{x^{n}}
$$

Think of the negative sign as an indicator light that says you are on the wrong floor of a twostory building.

Once you move to the correct floor, the light turns off.

Examples:

$$
\begin{aligned}
& 5^{-2}=\frac{1}{5^{2}}=\frac{1}{25} \\
& \frac{n^{-2} m}{7 m^{-4} n^{-3}}=\frac{m^{4} n^{3} m}{7 n^{2}} \\
& a^{3} \cdot a^{-8}=a^{-5}=\frac{1}{a^{5}} \\
& 3^{-2}=\frac{1}{9} \\
& 4^{-1}=\frac{1}{4} \\
& 7^{-5}=\frac{1}{7^{5}} \\
& \frac{1}{2^{-2}}=2^{2} \\
& \frac{1}{5^{-1}}=5^{1}
\end{aligned}
$$

Fractional Exponents

$$
x_{\uparrow}^{\frac{m}{n}}=\underbrace{n_{n}^{2}}_{\text {index }}{\sqrt{x^{m}}}_{\substack{\text { power }}}^{n} \sqrt[n]{x})^{m}
$$

Examples:

$$
\begin{aligned}
\sqrt[3]{8 x^{3} w^{9} z^{6}} & =\left(8 x^{3} w^{9} z^{6}\right)^{1 / 3} \\
& =8^{1 / 3}\left(x^{3}\right)^{1 / 3}\left(w^{9}\right)^{1 / 3}\left(z^{6}\right)^{1 / 3} \\
& =2 x w^{3} z^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { You can rewrite } \\
\text { this guy as a } \\
\text { th power. }
\end{array} \rightarrow 16^{3 / 4} \\
& 16^{3 / 4}=\left(2^{4}\right)^{3 / 4}=2^{4 \cdot 3 / 4}=2^{3}=8
\end{aligned}
$$

Roots and Radicals

The opposite of find a square is finding the square's roots or the like factors of a square.

The symbol for finding the square root is $\sqrt{ }$ and is called a radical.

Examples:

$$
\begin{aligned}
& 1^{2}=1 \quad \sqrt{1}=1 \\
& 2^{2}=4 母 \sqrt{4}=2 \\
& 3^{2}=9 ~ \# \sqrt{9}=3 \\
& 4^{2}=16 母 \sqrt{16}=4 \\
& 5^{2}=25 \# \sqrt{25}=5
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{25}=\sqrt{5 \cdot 5}=5 \\
& \sqrt{4}=\sqrt{2 \cdot 2}=2 \\
& \sqrt{100}=\sqrt{10 \cdot 10}=10 \\
& \sqrt{x^{2}}=\sqrt{x \cdot x}=x \\
& -\sqrt{6^{2}}=-\sqrt{6 \cdot 6}=-6
\end{aligned}
$$

You may also see

$$
\pm \sqrt{4}= \pm 2
$$

which is read "plus or minus 2."

