Exponents

An **exponent** (ex-po-nent) refers to the number of times a number is multiplied by itself.

Examples:

 $5^{2} = 5 \cdot 5 = 25$ $2^{3} = 2 \cdot 2 \cdot 2 = 8$ $10^{5} = 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 100,000$ $1^{7} = 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 1$

Tip #1: 10ⁿ is a 1 with n zeros after it. (10²=100; 10³=1,000; 10⁷=10,000,000) Tip #2: 1ⁿ is a 1 no matter what value is used for n.

Vocabulary notes:

- 5² can be read as 5 to the second power or 5 **squared**.
- 2³ can be read as 2 to the third power or 2 **cubed**.

Higher exponents are read as the 4^{th} power, etc.

Note: Any number raised to the zero power is 1.

 $5^0 = 1$ and $342^0 = 1$, etc.

100,000	10,000	1,000	100	10	1	0.1	0.01	0.001	0.0001
100,000	10,000	1,000	100	10	1	1 10	1 100	1 1,000	1 10,000
105	104	10 ³	10 ²	10 ¹	100	10 ⁻¹	10-2	10-3	10-4
Hundred Thousands	Ten Thousands	Thousands	Hundreds	Tens	Ones	Tenths	Hundredths	Thousandths	Ten-thousandths
	000)	000	0 (1) 0		000) dime) cent) mill	e e

Note: Any number raised to the zero power is 1. $5^0 = 1$ and $342^0 = 1$, etc.

Expanded Notation uses fractions for place value.

 $34.762 = 3x10 + 4x1 + 7x\frac{1}{10} + 6x\frac{1}{100} + 2x\frac{1}{1,000}$

Exponential Notation uses exponents for place value.

$$34.762 = 3 \times 10^{1} + 4 \times 10^{0} + 7 \times \frac{1}{10^{1}} + 6 \times \frac{1}{10^{2}} + 2 \times \frac{1}{10^{3}}$$

Exponents and Integers

Be sure to watch the parentheses! Is the negative being raised to a power or is the number being raised and then you need the opposite?

$$5^{2} = (5) \cdot (5) = 25$$

$$(-2)^{4} = (-2) \cdot (-2) \cdot (-2) - (-2) = +16$$

$$-(2)^{4} = -(2) \cdot (2) \cdot (2) - (2) = -16$$

$$-2^{4} = -(2) \cdot (2) \cdot (2) - (2) = -16$$

Multiplication and Division with Exponents

Rules:

$$a^m \times a^n = a^{m+n}$$

 $a^m \div a^n = a^{m-n}$

$$\frac{3^6}{3^2} = \frac{3 \times 3 \times 3 \times 3 \times 3 \times 3}{3 \times 3}$$
$$= 3^{(6-2)} = 3^4$$

$$10^5 \cdot 10^{18} = 10^{5+18}$$

= 10^{23}

Raising an Exponent to a Power

Rules:

$$\left(b^{m}\right)^{n} = b^{m \times n}$$

Negative Exponents

Rules:

$$x^{-n} = \frac{1}{x^n}$$

Think of the negative sign as an indicator light that says you are on the wrong floor of a twostory building.

Once you move to the correct floor, the light turns off.

$$5^{-2} = \frac{1}{5^2} = \frac{1}{25}$$

$n^{-2}m$	m^4n^3m
$7m^{-4}n^{-3}$	$7n^2$

$$a^{3} \cdot a^{-8} = a^{-5} = \frac{1}{a^{5}}$$
$$3^{-2} = \frac{1}{9}$$
$$4^{-1} = \frac{1}{4}$$
$$7^{-5} = \frac{1}{7^{5}}$$
$$\frac{1}{2^{-2}} = 2^{2}$$
$$\frac{1}{5^{-1}} = 5^{1}$$

Fractional Exponents

Examples:

$$\frac{\sqrt{3}}{8} \times \sqrt[3]{9} \times \sqrt[3]{2} = (8 \times \sqrt[3]{9} \times \sqrt[9]{2})^{\frac{1}{3}}$$

= $8^{\frac{1}{3}} (\times \sqrt[3]{2})^{\frac{1}{3}} (w^{9})^{\frac{1}{3}} (z^{6})^{\frac{1}{3}}$
= $2 \times w^{\frac{3}{2}} z^{2}$

You can rewrite this guy as a $\rightarrow 16^{3/4}$ 4th power.

$$16^{\frac{3}{4}} = (2^{4})^{\frac{3}{4}} = 2^{4 \cdot \frac{3}{4}} = 2^{\frac{3}{2}} = 8$$

Roots and Radicals

The opposite of find a square is finding the square's **roots** or the like factors of a square.

The symbol for finding the square root is $\sqrt{}$ and is called a radical.

Examples:

$$1^{2} = 1 \qquad \Box \ \sqrt{1} = 1$$

$$2^{2} = 4 \qquad \Box \ \sqrt{4} = 2$$

$$3^{2} = 9 \qquad \Box \ \sqrt{9} = 3$$

$$4^{2} = 16 \qquad \Box \ \sqrt{16} = 4$$

$$5^{2} = 25 \qquad \Box \ \sqrt{25} = 5$$

$$\sqrt{25} = \sqrt{5} \cdot 5 = 5$$

$$\sqrt{4} = \sqrt{2 \cdot 2} = 2$$

$$\sqrt{100} = \sqrt{10 \cdot 10} = 10$$

$$\sqrt{x^2} = \sqrt{x \cdot x} = x$$

$$-\sqrt{6^2} = -\sqrt{6 \cdot 6} = -6$$

You may also see

$$\pm\sqrt{4} = \pm 2$$

which is read "plus or minus 2."